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AIAJsact
Quantitative diagliosis  involves llull~ctically cstilnat-
ing the values of unobscrvab]c  parameters that Lest
ex~)laill tlm obscnwd  IJaranlctcr  v a l u e s . Wc coll-
siclcr quallt,itativc  cliagnosis for colkinuous,  luln])Cd-
}Jarametcr,  steady -stat,c  ldlysical  systems because Such
models  arc easy to construct and the diagnosis prob-
Iom is considerably simpler thau that for correspond-
ing dynalnic  models. 10 fulther tackle  the difilculties
of numerically inverting a sinndatio~l  model  to con~-
pute a cliagllosis, wc propose to decoml)osc  a physical
system  nlodel  in terms of feedback loops. lhis de-
composition rccluccs tlm dimension of the prokdcm  and
consequently dccrcascs  the diagnosis search space.  We
illustrate this alqwoacll  on a lnodc] of a thcmnal  control
system studied in earlier rcscarcli.

Introcluction
In a model-based reasoning setting, diagnosis is the
probhxn  of explaining diffcrcnccs  betlwcc]i the behav-
ior observed of a lhysical system and the behavior prc-
dictcd  from a model of that systcm.  Regarcllcss  of the
nature of the physical systcm  model  (logical, quali-
tative, quantitative, probabilistic, etc. ..), diagnosis is
an example of an ill-posed inverse p~ oblcm: Taken in
isolation, behavior observations typically have a large
number of possiMc  cxplal)ations.  Namowing  the set of
likely cxplanatiolls, also called hypotheses, to a man-
agcal.dc  size is onc of the fundanwntal  problems of di-
a.gl~osis [Davis and Han~schcl,  1992].

In previous work on analog diagnosis, researchers
have used various approaches to focus hypothesis gen-
eration: dc Klccr  and Ilrown  [de Klcer  and llrown,
1992] rely on a conq>oncnt-ba.scd ontology to map
llypot}lcses  o n t o  inclividua] conll)oncuts  wllilc otllcrs
such as [l)vorak  and Kuipcrs,  1992, de~estc,  1992,
Oyelcyc et al., 1992] rely on the dynamic l)ehavior  of
the systcm  for diagnostic clues. Eventually, solnc lly-
l)othcscs  have to bc tcst,ed. For steady-state models,
this Incans  that a model lmcdictioll  will have to bc conl-
putcd  and  Inatchcd  against scnsol nma.surcxncnts  froln
the physical systcm.  Sillcc cliagnosis involves inferring
tllc state of noll-measurable lnqwrtics,  it lncans  that
a fault hypothesis corrcsl)oncks  to a set of exogenous

lnodc] lmramctcr  values. qkstillg  a fault llyl)otllcsis
thcm mwms vcrifyi~lg that tllc exogenous values lnake
lnodcl IM cdictiolls  consistent with the anomalous scn-
SOI” IIlm.s(llcnlcmt’s.

A s  de l{lccr aud IIIOWJ) obscrvc(i itl [dc Klccr  atld
IIrowll, 1992], this forl[l  of hyl)otllcsis  testing is coln-
}mtatiol) ally cxl)allsivc lmcausc the actual cxogmmus
parameter values that best ex]dain  the ano)nalous  sen-
sor mcasurcmel}ts  arc, aflc!r all, unknown. I’llrthcr-
]Ilorc, t] lc number  of  l)aralnclcrs  values  observed  i s
typically muc]l sljlallcl  tllall the total number of l)a-
I ameters  in the syste]u mode l .  l’llc  number  of ull-
known I ~aramctcr  values thus  far exceeds the num-
lmr of kuown values due to obscrvatiolls.  Although
there has  ken several a(ivanccs in diagrlosing  c o n -
tinuous physical SYSLCIIM with feedback at a qualita-
tive lCVCI [Rose and 1<] a~i]cr, 1991] the general prob-
lcln is quite  hard a~ llotccl in [Biswas and Yu, 1993,
Srinivas,  1994].

}Icre, we focus on t] LC lmoblem of colllputing  cxOgC-
ILOUS  palamcter values from observed mcasurcmcnts.
That, is, wc awwmc that adequate diagnostic hypothe-
sis have already been selected and that some agency
or progl am focusccl tllc attention of the diagnoscr
to dctc[ mine the diag]lostic  values of specific exoge-
nous parameters. To illustrate our discussion, wc
will use a simplified, steady-state, continuous, lumped-
parameter model of an cxterna.1-active  thermal control
systcm  (EATCS)  shown in Fig. 1, a two-phase anm~o-
nia thcr!nal  contro]lcr  dcsigl]cd at McDonnell Dougl&~
once co~midered for Space Station FYecdom.  This sys-
tcm is designed to tralmfer  heat from the crew cabin
and electronic cquipn~ellt and radiate it in space. The
vcllicle for this tral Isfcr is twbplmsc ammonia at or
LC1OW S: LtUratbll  tc]nlmrature.  Under  normal  circunl-
stanccs,  the tllell~lo(lyllall)ic  cycle works as follows: at
tllc cval )orators,  the llcat load va~)orizcs liquid anlmo-
nia thw chy prcduciug  a two-phase mixture. lhc ro-
tary fluicl managmncnt  clevicc separate% vapor and liq-
uid by (“.clltrifllgatic)xl. ‘J’llc vapor is circulated to thC
ccmdcnser side WI ICI c it is liquifkcl. To ensurm  proper
OIWI  ation over a wido range  of lwat  load conditions,
tllc back-pressure regulating valve ensures tl~at there
is enou~’,h liquicl alnlno]lia  flow to I]andlc the heat load
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Figure 1: l’he  evaporator loop of t}lc EA’J’(X.

without rcachillg  a superheated vapol state’
We will first  describe diagnosis as an inverse problem

ancl then describe a technique for reducing the dimen-
sionality  of the diagnostic problem. Finally} we present
an experiment to quantitatively cva]uatc  this approach
011 sitnulated  data.

Diagnosis as an inverse problem
I,ct  F(u, x) = O stand for the equation model of the
physical system where u is a set of exogenous param-
eters and x is the internal state of the system. Let
v e G(z)  bc the observation function where y is the
set of internal state parameters made observable by
sensors attached to the physical systcm. Steady-state
simulation is dcfilled by the following problc]rr:

Given u find ~ sLlch that:

{
F(U, z) == o
y = G(x)

Steady-state diagnosis is defined by the following in-
verse l)roblclll:

ll)ctailccl  analyses of this IIIodcl aIJI]car  in [l)iswas et
al., 1993, Rouc]Llcttc!, 1995]

Giwm y find u such that:

y =- (;(x) (1)

where z is imldicit]y  defined by:

F(7(, x) = o (2)

By colnl.sining  Eq. 1 and Eq. 2 into one system of
equations, this problcnl  bccomcs  equivalent to:

Given y find u SUCII  that:

s(ll, ~) = o. (3)

This p] oblcm is typically difficult because the num-
ber c)f exogenous paranlctcrs in u is not necessarily re-
lated to the rlumbcr  of observable parameters irl y. In
deed, tllc degree of scllsor instrumentation of the phys
ical system  is often a se] ~arate consideration based  on
various factors such as cost, reliability, cliagnosability,
and available tcleconmlunicatiolls  bandwidth. These
considerations typically lead to situations where the
number (,f mcmurcd  ])aramcters,  (i.e., the size of y) is
less t}lan the number of exogenous parameters affecting
the ldlysical  systcru (i.e., the size of u).

Nurncl  ically, such sittlations are the most troublo
s o m e  bccausc  tllc systmn S of ccluations  is undcr-
constrail)ed  and thcrcforc  lnay have an entire manifold



of solutions! Since a direct equation solving approacl)
is not  fc,asib]c, wc need to compute a solution by min-
imizing  the residual error of Eq. 3, i.e.,:

Given y and an error lCVC1 c >0, find u such that:

Recall that S implies that the entire set of state pa-
rameters, x, must bc computed in orclcr to solve the
problcm.  Since there arc far more internal parame-
ters in z and u than wc can typically observe in y, the
least-squares xninimization  problcm  bccomcs  numeri-
cally ill-l] oscd, a]ld there exists a manifold of possible
solutions.

These two plolJcms - solution lnanifo]ds  and lack
of guidance - imply that wc need to exploit additional
domain knowledge to better constrain the n~inimiza-
tion problcm  and obtain meaningful solutions. This
is a classic situation of ill-posed minimization prob-
lems which occurs quite frcqucmtly it] solvil]g integral
equations of the first kind.  For such problems, para-
doxically it is lCSS important to obtain the Inost accu-
rate solution than deriving mcaniugful  constraints that
characterize an adequate solution. The difficulty of cx-
crcisiug  this tradeoff makes least-squares nlillilnizatioll
problems numerically dclicatc and dificult to SOIVC.

For the diagllosis  of physical systems, additional so-
lution constraints stcm from two sources: 1) the tcm-
pora]  behavior of the physical systcm  and 2) the feed-
back structure of the physical systcm  to rcducc  tllc cf-
fcctivc  number of internal parameters to hc estimated
(i.e., the size of x).

Temporal phases of steacly-state
behavior

Instead of solving the diagnosis problcm  for a given
sample of observations y(t) measured at time i?, wc can
exploit a-prtion” knowledge of the fact that the behavior
of the physical systcm over time is approximativcly
continuous and diflerentiablc  bctwccn  discrete cvcuts
(e.g. flipping a switch, opening or closing a valve).
This leads us to consider not just onc tclcmctry point
but a temporal sequence of IV such points iu a sliding
window from an instant in the past: tN to the current
instant: t = t]:

y(tN),. ... y(tz), y(tl = t).

Suppose now that the physical system is at steady
state in the iutcrval:  [t~, tl]. This  means that  al l
mcasurcmcllts  taken in that iutcrval  must tJc equal:
y(t~) = y(tN_~)  ..- = y(tl ) by dcfiniticm of steady -
statc behavior. This is equivalent to N — 1 constraints:

llY(~i-  1 )  -  Y(ti)[]  =() for all 2. (5)

S u p p o s e  now that tllc physical systcm  is not at
stcacly state but that there arc small transicut or pe-
riodic  changes small cnoug.h that, at some ICVC1  of ap-
proximation, tllc systc]n  could bc considered at or near

steady state. ‘J’l)cll, it fcdlows that ill some sense, coll-
sccutivc  states arc l)cal each other m well. WC can
express this with IV – 1 constraints adapted from Eq. 5:

llY(ti-l)  - y(ti)ll  < f . (G)

Small c I ncans a physical systcm C1OSC to steady-state.
(Ionvcrsc]y, large c mcam a physical system away from
stead y-state. Snlall E nlay bc used to detect quicsccucc,
while la] ge c may bc used to detect rcachablc  stcady-
statcs ncarhy  the currcl]t  transient state,

Wc would like then to exploit multiple telemetry
])oint.s  i]! the followilg  ]nauncr:

Given y(tjv),..., y(tl ) and an error bound c >0,
find u(fN),..., u(tl ) such that:

[

llS(U(tN),  y(tN))ll  <c,
lls(u(t~-  ~),y(t~-,))11  <c,

(7)

[ls(@,j(t2))ll  < ( ,
Ils(u(f,  ),y(t,  ))ll <t.

As st~ltcd, we lack constraints to express the fact
that coll$ecutive tclclnetry observations y(tN ) -.. y(t]  )
arc not iudcpcndcllt  but iustead correspond to an ac-
tual slice of behavior history. This type of additional
knowledge fits within the application scope of regu-
larization  in parameter space,  a technique of numer-
ical analysis designed for nonlinear, ill-posed inverse
I)roblerns  [Chavcmt and Kuuish,  1993]. Here, we usc
Tikhonov rcgularizatio]l  [Chavcut  and Kunisch,  1994]
as follows. Instcacl of solving the diagnosis problcm  7
ass a nonliucar  lmst-scluarcs  nlinimi7Jation, namely:

Given y, find:

s(~(tN),  y(iN))

ar~,ll~itluItNJ,...,u(tl) , (8)

s(u(tl  j,y(tl))

wc auglnent  problcln  8 with additional inforlnation
from n-t h order diffcrwice relations for capturing the
continuity of the physical system behavior. In the case
of scco:ld-order  diffcrcllcc relations, the resulting prob-
lcm is SILOWU below:

Givcl~  y, find: arglllill~(t~),...,u(f,)

s(tl(t)J),  y(t~))

. (9)

If c z O, thc]l problcm  9 is equivalent to no~llincar
least-squares minilnization  problem 8. l’hc value of c
controls the iml)ortance  attributed to the second-order
diflcrcn[:cs terms, ]Mmcly:



c [lL(tk-] ) – 2tL(tk) +- U(tk+l)] .

A’,largc rcgularization cocfficim]t  c means that the
rcgularization  tcrlll:  u(tk.  I ) – 2u(t~) + u(t~+ 1 ) must
be small which ill t,urll forces the solution values to bc
C1OSC to each other. A small rcgulariza,tion  cocfflcicnt c
means that the rcgularization term can bc correspond-
ingly larger which in turn allows more freedom to the
solution values. In practice, it can Lc difficult to select
an adequate rcgularizatioll  cocflicicnt.  lhus, althougli
powerful, this tcclllliquc  requires some fixLc tuning to
w o r k  pro~)crly.  Note that  during  the n\il\in\iT,ation
process, scvmal  estimates of the cxogcuous  parameters
u(t~), . . . . u(tl ) will bc made,  and tllc corresponding
obscrvahlc  state paralnctcrs y(t~), . . . . y(tl ) will thcrc-
forc have to bc computed hy simulation. Since sim-
ulation  consists in solving  tllc slate equations of the
model, the usc of rcgularizatio~l  ill I)aralnctcr  space as
a means of l)crformi]lg  dia.glosis  relics llcavily ou cff]-
cicnt  equation Solvil]g  techniques.

Dimension reduction
In tllc previous section, wc characterized the diagno-
sis problcm  as that of estimating the values of exoge-
nous parameters, u, given observations y by solving
S(u, V) = O for a given y. As wc saw ill equations 1
and 2, this ncccssitatcs to fincl the values of the un-
observable internal parameters x SUCIL  that y = G(z)
where F(u, z) = O. The more unobscrvab]c  parameters
there arc, the more difficult will it bc to numerically
compute a diagnosis, u and tllc more uncertain will
the results be. I,ikc all inverse problwns  where it is
not  directly l~ossible to com~nrtc  IL for a given y, the
solution is first estimated, 0, and a resultant, ij, is com-
putcci. Other estimates of arc successively generated
until the residual error, Ily – iJl, is below a convergence
threshold.

For a given estimate, C, it is therefore inll)ortant to
mi:litnizc  the number of unobservable state l)aramc-
tcrs, z that must bc also estimated in order to com-
pute a prediction ~. Wc address this issue by imposing
a structure to the physical system moclcl such that the
size of z is as small as possildc.  To achieve this, wc seek
to identify the structure of the physical systcm  model
to obtain the set of indcpcndcnt  state parameters that
arc equivalent to z U u. Here, wc approximate this
ideal situation by analyzing the feedback structure of
the moclcl so that z U IL bccomcs  as small as possiMc.
‘I%is process occurs in three phases.

First, wc start by constructing all algebraic ordering
of the mocicl parameters and equations to cal)ture  how
paramct,crs  can bc ulldcr,  properly or over-constrained
from cquatiolls  ancl how equations can bc prol)crly  con-
straining onc or Over-collstrailling lnultiplc  paralnctcrs,
Figure 2 shows two cxaulplcs  wit]] equations (top),
algebraic ordcriligs  (middle) ancl corresponding high-
lCVC1 equation-solvillg code (botto]n).  ‘1’his  notion of
algebraic ordcrillg  bears close rcsenb]ancc  to that of

causal o] dcriug;  the lati,cr  seeks to idcxltify which pa-
rameters causally inffuc]]cc  the values of other parame-
ters  whil(:  the former seeks to identify how parameters
arc con~~ iuted from otlmr ])arametcrs  and equations.
q’lic disti Ilction bclwecrl tllc two stems from the differ-
ences bet wccn tllc causal asl)ccts  of a model ccluations
and parameters a~]d tl]c co~nlmtational  aspects of nu-
merically computil]p,  pa] alnctcr values.

Second, wc usc g] al)ll-tllcorctic  tcchlliqucs  to dc-
composc the algebraic ordcrillg  in tcrlns of strongly-
conuectml  compmmlts  allcl each conl[cctccl  component
ill terms of fccdl)ack lcml)s. Although there arc theo-
retical lilnitations 01] solvi]lg  tile feedback vertex set
problem for arbitrary dircct,cd graphs, tllc structure
of algcbl iiic orderings al c s~rongly  biased to reflect ci-
tl]cr pl)ysical feedback 100IH or algebraic circularities
of depell(lcncics.  WC. 1) avc cxploitcci these biases to
construct cfficicllt  decolnpositio]l  algorithms described
i~l [Itouquctte,  1995]. h’or tllc EATCS  system, the al-
gebraic  ordering collstl  uctccl is shown in Fig. 3 and
the struc~,ural  feedback dccolllposition  made of this or-
dcril)g is SIIOWU in I’ig.  4. An example of algebraic
equation, eq20, is SI1OUIII  below:

(defeqn : cond # [Pl Osat.Pitot*Lambdal
+ Ppitot* (1- Lambdal)]#

:if-true #[ fl=:(Pi/4) * ( P h i l / 1 2 . 0 ) - 2
*sqrt (2*rl..iqPitot* (Ppitot -PsatPi tot )

*4633.05/Lambdal)]#
:if-false #[f2=(Pi/4)*(Phi2/i2.0)-2

*sqr t (2*rLiqPi to t*  (Ppi to t -P2)
*4633.05/Lambda2)]#)

l’he  tltird and final s(c1) consists in generating a
simulatic)~l  program froxll a decomposed algebraic or-
dering.  ~’hcadditional structure brought by fccdback
analysis  :Lllows us to clilni~latc all but the state pa-
ramct.ers  of each feedback loop thereby leading to a
drastic dimension  rcduct  ion in t}lc simulation program
asshowu  in TaMc 1 fort]lc ltAqlCSmodcl.  lhisthrec-
stage  aplmoach to ccmst,ructing simulation programs
is implcnlcnted  in a colllputcr  program, DAGGER de-
scribed i~, [Rouqucttc,  ]995].

Expcri]ncnt Setup
Sensor technology crcatcs il]llcrcnt  limitations on what
systcm  lJaramctcrs  can bc measured. For example,
W’hik! it is ~ossiblc  to lll~ZL~Ul  c l)ressUres,  telll~fJratUr(X,
flow rates or pum~) sl)ccds, it is not yet feasible to
mca.sure other importal]t cllaractcristics, such as the
quality of two-p],asc  fluids indicating; the ratio of va-
I)or  to liquid presmlt  ill a fluid (1.0 for 100~0 liquid
and O% vapor;O.Ofor O(X liquid and 100% vapor). For
tllc EAT(!S,  we focuscd on tl]cmcasuraldcp  aramcters
of Table 2. I)cpcndillg  0]1 tllc modeling assumptions
used, the total nu]nber  of l)aramcters  (i.c!., Iul+- Izl+-lgl)
varies lmtwecn 45 al]d 88 which makes this inverse
})roblclnlllldellial)ly  scvcrcly undcr-constraiucd.

‘1’hc diagnosis ~,roblcl,l consists in identifying the val-
ucs of tllc  6 cxogcllous  l)aralnctcrs  wllicll l e ad  to  a



Equa(ions

Actual
(hclcring
Example

cl. f=wcnowr~l)
c~(p~pz)  = o
e2f.pj,p2) = O

Unrlcr-constrained:  p. Under-constrained: p.
Over-conskalncd: e2 Over-constrained: p]

IIquation-solving
alszorithm

l’~nd a value of p. such that
pl= eofpo) satisfies Finds valucofpo  such that

(opcrafionali7.ation) e2 Q’1)P2) = O ~ivcn PI
p l=  co(pc,)givcnpl.

An example of ovcl-c~~l~strai~-lc(l equation (left) and over-constlailmcl parameter (right).

q’able 1: Dilncnsion  reduction duetofecdl Jack decolnl)ositiol~
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f Flow ratcat 111’IW inlet.
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fl Now rate at first, venturi outlet.
f 2 k’low rate at s e c o n d  vcn~u%Futi~~.  “----  —-—

—.—.  — ..— —

‘1’aMe2:  Asetofmcasurablcp aralnetcrso ft)lcl;ATCS

match bctwccu  the simulated and observccl  values of
the above 10 parameters. All thcothe] internal state
parameters (29 to 72 depending on the assumptions
chosen) must bc estimated as well. There  ale vari-
ous ways toconstrain  tllisproblcxn  better for example,
using ranges of p]lysically  plausible values for each es-
timated parameter and qualitative information about
likely directions of change (e.g., [I{apadia  et al., 1994]).
Eventually, these sources of information will narrow
the problcm  down to iutcrvals  of plausible values in
which adia.gnosis  must bc found.

TO evaluate the feasibility of doirlg quantitative diag-
nosis, we took a model of the W4’I’CS and constructed
two diagnosis cnginm,  ‘1’lIc first erlginc, the single-state
diagnoscr,  attempts to identify the exogenous paran~-
cters  that Lest cxplaiu  a set of observations. ‘1’hc scc-

1 diarnctm.
2 dialllctcr. — —
;Fn;-”i ‘Inafl +

TaMe 3: A representative set physical characteristics
of the R ATCS

ond engine, the regularized diagnoscr, exploits the near
steady-state prc~perties  of a temporal sequence of ob-
servations to better co~lstrain the problem.

Single state d x Given au observation vector y, find
the internal paranlctcrs u which best explain the ob-
scrvat  ion (Fig. 5).

Regularized dx Given IV observations, use regular-
iy,ation in paranletcr space to find a sequence of h’
interl)al  parameters which best explain the observa-
tions (Fig. 6).

~’hc structures of tl]c sillglc-state and regularized di-
agnc)sis  cxlxxinicl~ts arc  very similar (Figs.  5, 6). We
gcncrat(:d  telellletry  clata  by first si]nulating  states of
the FM’JICS.  Tilis  rmlsists  in describirlg  a set of hypo-
thetical physical cilcurl~stanccs  in tcrlns of values for
tllc exc)gcmous l)ararncters  (top left co] ncr) and solv-
irlg the EA1’CS ll~c)dcl equations with respect to tllc
CXOgCU(JUS  paramctms Witli a quantital, ivc sin~lllatiol~
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Figure  3: Algebraic Ordering of the EATCS  model. Solid cdg,cs represent how equaticms lmopcrly constrain paranl-
ctcrs,  dashed edges rcprcscnt  how paramctcm values are IIcccssaty to solving cquatio]is.  1 ‘aramctcrs  arc  shown ix~
gray boxes, cxo.gcnous  parameters are emphasized with heavy li~lcs; equations arc .SIIOWII  with white  boxes.
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Figure 4: ‘1’l]c 2-lcvc1 llicrarchical  feedback decom])osition  of the EATCS ]nodcl; gl a~r boxes indicate the fccdforward
and feedback components of cacll feedback loop.

n~odcl.2  At this stage, the values of the model param-
eters correspond to tllc steady-state configuration the
EATCS.  Wc tlicn  sclcctcd  a subset of tl]c parameters
to represent a set of plausible sensor nlcamrcmcmts  wc
could obtain from the actual EA1’CS  hardware sys-
tem. To these silnulatcd values, wc acldcd either white
or gaussian  noise to account for various sources of noise
such as sensor instruments, the physical process itself,
and the approximativc nature of the EATCS  model
used (top right corner).

The task of the diaglloscr  is to reconstruct the state
of the physical systcm  which) when simulated, is the
closest approximation of the true lhysical state of the
EATCS (bottom). This works as follows: First, an es-
timate of the exogenous is parameters generated (bot-
tom right corner). Solving the model equations with
respect to the exogenous parameter estimates then re-
sults in a set of prcdictcd state parameter values. Com-
paring the actual tclcmctry obscrvat,ions  with the pre-
dictions produces a set of residuals (ccutcr).  The heart
of the diagnosis then consists in adjusting the exoge-
nous parameter value estimates until the residual pre-
diction error is minimized (bottom left). Finally, the
solution of the nonlinear least-squares problcm  defines
a diagnosis wliosc accuracy is lncasurcd  with respect
to the original exogenous conclitiolis  (middle left).

— .  — _ .  _
‘I)uc  to the inability  c)f conventional simulation nleth-

ods to pro}mly convcrgc  on ]~hysically plausihlc  states, we
w e r e  lilnit,cd ill tllc  clloicc  of sil)lulatio]l  lnodcls  to tllosc
coxlstructcd  by r) A(; OIjlL.

The structure of the regularized diagnoscr  is simi-
lar to tllc single-state cxcq)t that the nordincar  lcast-
squarcs  lninimization  o] )cratcs  on the residual predic-
tion error and a set of k-tl) order difference relations
also known = regularized constraints.

The accuracy ancl lmrformance  of the simulation
model al c critical to the success of this approach. For
this purl  )OSC,  wc used a graph-theoretic approach to
a.nalyzin~ steady-stat,e, lumped-pararnctcr models of
algebraic equations in order to construct a sjJecial-
ized sitnulator wliosc stlucturc espouses the feedback
present i) L the model.

l’{.cslllts
In most cases, the sil)glc-state  diagl~oser  performed
worse t]lau  the regularized diagnoscr  hccausc  there
are typically many l)ossildc ways to explain a single
observed state. Figure  7 shows a comparison of the
single-state and tllc regularized diag[loscrs  (1)x). Ilotll
diagnose]s had to estimate the values of the following
exogenous paranictcrs, the lmmp  speed (Fig. 7-a) (also
direct ly ] neasurcd  through a sensor), the first venturi
dial netcr  (Fig. 7-1)),  and tile heat load on the first evap-
orator (}’ig. 7-c). IIotl) diagllosers  were given hydro-
tllcrma]  lnca.surelncnts  for tl]c first leg, namely, the
evaporator outlet tcnllmraturc (Fig. 7-cl), the evapora-
tor il]lct pressure (Fig. 7-c) and tllc vcilturi  flow rate
(Fig. 7-f).

Altl)ough  tllc I cgulaliy,cd diaguoscr  clearly out\)  cr-
formcd tllc singlw stat c (Iiagnoscr,  wc were I]ot able to
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Figure  7: Noise-frcw diagnosis cxpcrinlcnt  fo~ RFMJ3 pump s~)eedup, lmat load increase and venturi clog. Although
the predictions of temperature (cl), pressure (e), and flow rate (f) perfectly lnatcl! tllc observations, there arc
significant differences between the true and diagl[oscd values of tllc exogenous para~ncters:  RFMD  speed (a),
venturi diameter (b) al]d evaporator heat load (c). However, in all caws  the regularized diagnoscr  was able to make
reasonable estimates of these unknown  values. On the other hand, the single-state diagnoscr  could not even produce
a reasonable guess of the unknown  values. This difference is exp]ail,ablc  by the ]lulnl~cr  of possible explanations
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. Cxt,cllcf  these results to lloisv nlcasu]clucmts.  While the.
sin.g}e.stat.c diaglloscr  is definitely out of consideration
for noisy diagnosis, wc had originally cxl)cctcd  to usc
rcgularizatioll  to illlposc  global smootlmcss  const~aints
that a diagylosis  lnust cxllibit.  Ullforlunatc]y,  i n s t ead
of ol)taining  sIIlootl I diafy]oscs in tllc sense that tllc
tra~lsitiolis  froln OIIC s t a t e  t o  t h e  Ilcxl arc snlall, t h e
r e g u l a r i z e d  cliaglloscr ovcrfittccl tlw lloisc.  ‘1’hc nunlcr-
ical analysis work mquircd  to pro~mrly  tune a regular-
ized diagnoscr  cxtc])dcd  WCII bcyo]]d  the scope of this
thesis; tllcrcforc,  wc leave these invcstigatiolls  for fu-
ture work.
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